skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Ly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To reap the benefits of reconfigurable intelligent surfaces (RIS), channel state information (CSI) is generally required. However, CSI acquisition in RIS systems is challenging and often results in very large pilot overhead, especially in unstructured channel environments. Consequently, the RIS channel estimation problem has attracted a lot of interest and also been a subject of intense study in recent years. In this paper, we propose a decision-directed RIS channel estimation framework for general unstructured channel models. The employed RIS contains some hybrid elements that can simultaneously reflect and sense the incoming signal. We show that with the help of the hybrid RIS elements, it is possible to accurately recover the CSI with a pilot overhead proportional to the number of users. Therefore, the proposed framework substantially improves the system spectral efficiency compared to systems with passive RIS arrays since the pilot overhead in passive RIS systems is proportional to the number of RIS elements times the number of users. We also perform a detailed spectral efficiency analysis for both the pilot-directed and decision-directed frameworks. Our analysis takes into account both the channel estimation and data detection errors at both the RIS and the BS. Finally, we present numerous simulation results to verify the accuracy of the analysis as well as to show the benefits of the proposed decision-directed framework. 
    more » « less
  2. Joint device-to-device (D2D) and cellular communication is a promising technology for enhancing the spectral efficiency of future wireless networks. However, the interference management problem is challenging since the operating devices and the cellular users share the same spectrum. The emerging reconfigurable intelligent surfaces (RIS) technology is a potentially ideal solution for this interference problem since RISs can shape the wireless channel in desired ways. This paper considers an RIS-aided joint D2D and cellular communication system where the RIS is exploited to cancel interference to the D2D links and maximize the minimum signal-to-interference plus noise (SINR) of the device pairs and cellular users. First, we adopt a popular alternating optimization (AO) approach to solve the minimum SINR maximization problem. Then, we propose an interference cancellation (IC)-based approach whose complexity is much lower than that of the AO algorithm. We derive a representation for the RIS phase shift vector which cancels the interference to the D2D links. Based on this representation, the RIS phase shift optimization problem is transformed into an effective D2D channel optimization. We show that the AO approach can converge faster and can even give better performance when it is initialized by the proposed IC solution. We also show that for the case of a single D2D pair, the proposed IC approach can be implemented with limited feedback from the single receive device. 
    more » « less
  3. Massive multiple-input multiple-output (MIMO) communications using low-resolution analog-to-digital converters (ADCs) is a promising technology for providing high spectral and energy efficiency with affordable hardware cost and power consumption. However, the use of low-resolution ADCs requires special signal processing methods for channel estimation and data detection since the resulting system is severely non-linear. This paper proposes joint channel estimation and data detection methods for massive MIMO systems with low-resolution ADCs based on the variational Bayes (VB) inference framework. We first derive matched-filter quantized VB (MF-QVB) and linear minimum mean-squared error quantized VB (LMMSE-QVB) detection methods assuming the channel state information (CSI) is available. Then we extend these methods to the joint channel estimation and data detection (JED) problem and propose two methods we refer to as MF-QVB-JED and LMMSE-QVB-JED. Unlike conventional VB-based detection methods that assume knowledge of the second-order statistics of the additive noise, we propose to float the elements of the noise covariance matrix as unknown random variables that are used to account for both the noise and the residual inter-user interference. We also present practical aspects of the QVB framework to improve its implementation stability. Finally, we show via numerical results that the proposed VB-based methods provide robust performance and also significantly outperform existing methods. 
    more » « less
  4. Constructive interference exploited by symbol-level (SL) signal processing is a promising solution for addressing the inherent interference problem in dual-functional radar-communication (DFRC) signal designs. This paper considers an SL-DFRC signal design problem which maximizes the radar performance under communication performance constraints. We exploit the symmetrical non-convexity property of the communication-independent radar sensing metric to develop low- complexity yet efficient algorithms. We first propose a radar-to- DFRC (R2DFRC) algorithm that relies on the non-convexity of the radar sensing metric to find a set of radar-only solutions. Based on these solutions, we further exploit the symmetrical property of the radar sensing metric to efficiently design the DFRC signal. Since the radar sensing metric is independent of the communication channel and data symbols, the set of radar-only solutions can be constructed offline, therefore reducing the computational complexity. We then develop an accelerated R2DFRC algorithm that further reduces the complexity. Finally, we demonstrate the superiority of the proposed algorithms compared to existing methods in terms of both radar sensing and communication performance as well as computational complexity. 
    more » « less
  5. A reconfigurable intelligent surface (RIS) is a prospective wireless technology that enhances wireless channel quality. An RIS is often equipped with passive array of elements and provides cost and power-efficient solutions for coverage extension of wireless communication systems. Without any radio frequency (RF) chains or computing resources, however, the RIS requires control information to be sent to it from an external unit, e.g., a base station (BS). The control information can be delivered by wired or wireless channels, and the BS must be aware of the RIS and the RIS-related channel conditions in order to effectively configure its behavior. Recent works have introduced hybrid RIS structures possessing a few active elements that can sense and digitally process received data. Here, we propose the operation of an entirely autonomous RIS that operates without a control link between the RIS and BS. Using a few sensing elements, the autonomous RIS employs a deep Q network (DQN) based on reinforcement learning in order to enhance the sum rate of the network. Our results illustrate the potential of deploying autonomous RISs in wireless networks with essentially no network overhead. 
    more » « less
  6. One-bit digital-to-analog converters (DACs) are a practical and promising solution for reducing cost and power consumption in massive multiple-input multiple-output (MIMO) systems. However, the one-bit precoding problem is NP-hard and even more challenging in frequency-selective fading channels compared to the flat-fading scenario. While block-wise processing (BWP) can effectively address the inter-symbol-interference (ISI) in frequency-selective fading channels, its computational complexity and processing delay can be too high for practical implementation. An alternative solution to alleviate the processing complexity and delay issues is symbol-wise processing (SWP) which sequentially designs the transmit signals. However, existing SWP work leaves unwanted interference for later signal designs. In this paper, we propose an SWP approach which can efficiently address the ISI even at the symbol rate. The idea is to design the transmit signal to not only be beneficial for its time slot, but also to provide constructive interference for subsequent symbols. We develop two active ISI processing methods that significantly outperform a conventional approach, one of which that even outperforms the BWP approach at low SNR. 
    more » « less
  7. Abstract Food loss and waste (FLW) is a major challenge to food system sustainability, including aquatic foods. We investigated aquatic FLW in the food supply of the United States, the largest importer of aquatic food globally, using primary and secondary data and life cycle methodology. We show that there are significant differences in FLW among species, production technology, origin and stage of supply chain. We estimate total aquatic FLW was 22.7%, which is 43–55% lower than earlier estimates reported in the literature, illustrating the importance of applying a disaggregated approach. Production losses associated with imported food contribute over a quarter of total FLW, and addressing these losses requires multinational efforts to implement interventions along the supply chain. These findings inform prioritization of solutions—including areas of need for innovations, government incentives, policy change, infrastructure and equity. 
    more » « less